Client Integration Examples

Complete code examples for connecting popular data tools to Rustberg.

Table of Contents

  1. Apache Spark
    1. PySpark with PyIceberg Catalog
    2. Scala Spark
  2. Trino
    1. Connector Configuration
    2. SQL Examples
  3. Apache Flink
    1. Flink SQL
    2. Flink Java API
  4. PyIceberg
    1. Basic Usage
    2. Reading and Writing with Arrow
    3. Schema Evolution
  5. DuckDB
    1. Direct Connection
    2. With PyIceberg
  6. Polars
  7. AWS SDK Integration
    1. boto3 for S3 FileIO
    2. Assume Role for Cross-Account Access
  8. REST API Direct Usage
    1. curl Examples
    2. Python requests
  9. Jupyter Notebook Example
  10. Error Handling Best Practices
  11. Configuration Reference
    1. Common PyIceberg Configuration
    2. Spark Configuration Reference

Apache Spark

PySpark with PyIceberg Catalog

from pyspark.sql import SparkSession

spark = SparkSession.builder \
    .appName("RustbergExample") \
    .config("spark.jars.packages", 
            "org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:1.5.0") \
    .config("spark.sql.extensions", 
            "org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions") \
    .config("spark.sql.catalog.rustberg", 
            "org.apache.iceberg.spark.SparkCatalog") \
    .config("spark.sql.catalog.rustberg.type", "rest") \
    .config("spark.sql.catalog.rustberg.uri", "https://rustberg.example.com") \
    .config("spark.sql.catalog.rustberg.credential", "your-api-key") \
    .config("spark.sql.catalog.rustberg.warehouse", "s3://my-warehouse/") \
    .config("spark.sql.catalog.rustberg.io-impl", 
            "org.apache.iceberg.aws.s3.S3FileIO") \
    .config("spark.sql.defaultCatalog", "rustberg") \
    .getOrCreate()

# Create a namespace
spark.sql("CREATE NAMESPACE IF NOT EXISTS analytics")

# Create a table
spark.sql("""
    CREATE TABLE analytics.events (
        event_id STRING,
        event_type STRING,
        user_id STRING,
        timestamp TIMESTAMP,
        properties MAP<STRING, STRING>
    )
    USING iceberg
    PARTITIONED BY (days(timestamp))
""")

# Insert data
spark.sql("""
    INSERT INTO analytics.events VALUES
    ('evt-001', 'page_view', 'user-123', current_timestamp(), map('page', '/home')),
    ('evt-002', 'click', 'user-456', current_timestamp(), map('button', 'signup'))
""")

# Query data
df = spark.sql("SELECT * FROM analytics.events WHERE event_type = 'click'")
df.show()

# Time travel
spark.sql("SELECT * FROM analytics.events VERSION AS OF 1").show()

Scala Spark

import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder()
  .appName("RustbergScala")
  .config("spark.sql.catalog.rustberg", "org.apache.iceberg.spark.SparkCatalog")
  .config("spark.sql.catalog.rustberg.type", "rest")
  .config("spark.sql.catalog.rustberg.uri", "https://rustberg.example.com")
  .config("spark.sql.catalog.rustberg.credential", sys.env("RUSTBERG_API_KEY"))
  .config("spark.sql.catalog.rustberg.warehouse", "s3://my-warehouse/")
  .config("spark.sql.extensions", 
          "org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions")
  .getOrCreate()

// Use SQL
spark.sql("SELECT * FROM rustberg.analytics.events").show()

// Use DataFrame API
import org.apache.iceberg.spark.Spark3Util

val table = Spark3Util.loadIcebergTable(spark, "rustberg.analytics.events")
val snapshots = table.snapshots()

Trino

Connector Configuration

# /etc/trino/catalog/rustberg.properties
connector.name=iceberg
iceberg.catalog.type=rest
iceberg.rest-catalog.uri=https://rustberg.example.com
iceberg.rest-catalog.security=OAUTH2
iceberg.rest-catalog.oauth2.token=your-api-key

# S3 configuration
hive.s3.aws-access-key=${ENV:AWS_ACCESS_KEY_ID}
hive.s3.aws-secret-key=${ENV:AWS_SECRET_ACCESS_KEY}
hive.s3.region=us-east-1

SQL Examples

-- Show catalogs
SHOW CATALOGS;

-- List schemas
SHOW SCHEMAS FROM rustberg;

-- Create schema
CREATE SCHEMA IF NOT EXISTS rustberg.analytics;

-- Create table
CREATE TABLE rustberg.analytics.page_views (
    view_id VARCHAR,
    page_url VARCHAR,
    user_id VARCHAR,
    view_time TIMESTAMP(6) WITH TIME ZONE,
    duration_seconds INTEGER
)
WITH (
    format = 'PARQUET',
    partitioning = ARRAY['day(view_time)']
);

-- Insert data
INSERT INTO rustberg.analytics.page_views
SELECT 
    uuid() as view_id,
    '/products/' || CAST(n AS VARCHAR) as page_url,
    'user-' || CAST(n % 1000 AS VARCHAR) as user_id,
    current_timestamp as view_time,
    (random() * 300)::INTEGER as duration_seconds
FROM UNNEST(sequence(1, 10000)) AS t(n);

-- Query with partition pruning
SELECT user_id, COUNT(*) as views
FROM rustberg.analytics.page_views
WHERE view_time >= TIMESTAMP '2024-01-01 00:00:00'
GROUP BY user_id
ORDER BY views DESC
LIMIT 10;

-- Time travel query
SELECT * FROM rustberg.analytics.page_views FOR VERSION AS OF 1234567890123;

-- Show table history
SELECT * FROM "rustberg.analytics.page_views$snapshots";

-- Rollback to previous snapshot
CALL rustberg.system.rollback_to_snapshot('analytics', 'page_views', 1234567890123);

-- Create Iceberg catalog
CREATE CATALOG rustberg WITH (
    'type' = 'iceberg',
    'catalog-type' = 'rest',
    'uri' = 'https://rustberg.example.com',
    'credential' = 'your-api-key',
    'warehouse' = 's3://my-warehouse/',
    'io-impl' = 'org.apache.iceberg.aws.s3.S3FileIO'
);

USE CATALOG rustberg;
USE analytics;

-- Create streaming table
CREATE TABLE clicks (
    click_id STRING,
    user_id STRING,
    click_time TIMESTAMP(3),
    url STRING,
    WATERMARK FOR click_time AS click_time - INTERVAL '5' SECOND
) WITH (
    'format-version' = '2',
    'write.upsert.enabled' = 'true'
);

-- Streaming insert from Kafka
INSERT INTO clicks
SELECT 
    click_id,
    user_id,
    click_time,
    url
FROM kafka_source;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.iceberg.flink.FlinkCatalogFactory;

public class FlinkIcebergExample {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = 
            StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tableEnv = 
            StreamTableEnvironment.create(env);
        
        // Register Rustberg catalog
        tableEnv.executeSql("""
            CREATE CATALOG rustberg WITH (
                'type' = 'iceberg',
                'catalog-type' = 'rest',
                'uri' = 'https://rustberg.example.com',
                'credential' = '%s'
            )
        """.formatted(System.getenv("RUSTBERG_API_KEY")));
        
        tableEnv.useCatalog("rustberg");
        
        // Execute queries
        tableEnv.executeSql("SELECT * FROM analytics.events").print();
    }
}

PyIceberg

Basic Usage

from pyiceberg.catalog import load_catalog
from pyiceberg.schema import Schema
from pyiceberg.types import (
    NestedField, StringType, TimestampType, 
    LongType, MapType
)

# Connect to Rustberg
catalog = load_catalog(
    "rustberg",
    **{
        "uri": "https://rustberg.example.com",
        "credential": "your-api-key",
        "warehouse": "s3://my-warehouse/",
        "s3.access-key-id": "your-access-key",
        "s3.secret-access-key": "your-secret-key",
        "s3.region": "us-east-1",
    }
)

# List namespaces
for ns in catalog.list_namespaces():
    print(f"Namespace: {ns}")

# Create namespace
catalog.create_namespace("analytics", {"owner": "data-team"})

# Define schema
schema = Schema(
    NestedField(1, "event_id", StringType(), required=True),
    NestedField(2, "event_type", StringType(), required=True),
    NestedField(3, "user_id", StringType(), required=False),
    NestedField(4, "timestamp", TimestampType(), required=True),
    NestedField(5, "properties", MapType(6, StringType(), 7, StringType())),
)

# Create table
from pyiceberg.partitioning import PartitionSpec, PartitionField
from pyiceberg.transforms import DayTransform

partition_spec = PartitionSpec(
    PartitionField(
        source_id=4, 
        field_id=1000, 
        transform=DayTransform(), 
        name="day"
    )
)

table = catalog.create_table(
    identifier="analytics.events",
    schema=schema,
    partition_spec=partition_spec,
)

print(f"Created table: {table.identifier}")

Reading and Writing with Arrow

import pyarrow as pa
from pyiceberg.catalog import load_catalog

catalog = load_catalog("rustberg", uri="https://rustberg.example.com")
table = catalog.load_table("analytics.events")

# Read as Arrow table
arrow_table = table.scan().to_arrow()
print(arrow_table.to_pandas())

# Read with filters
filtered = table.scan(
    row_filter="event_type = 'click' AND timestamp > '2024-01-01'"
).to_arrow()

# Write Arrow data
new_data = pa.table({
    "event_id": ["evt-100", "evt-101"],
    "event_type": ["purchase", "refund"],
    "user_id": ["user-789", "user-789"],
    "timestamp": [
        pa.scalar("2024-01-15T10:30:00").cast(pa.timestamp("us")),
        pa.scalar("2024-01-15T11:00:00").cast(pa.timestamp("us")),
    ],
    "properties": [{"amount": "99.99"}, {"reason": "defective"}],
})

table.append(new_data)

Schema Evolution

from pyiceberg.catalog import load_catalog

catalog = load_catalog("rustberg", uri="https://rustberg.example.com")
table = catalog.load_table("analytics.events")

# Add a new column
with table.update_schema() as update:
    update.add_column("session_id", StringType())

# Rename a column
with table.update_schema() as update:
    update.rename_column("properties", "metadata")

# Make column optional
with table.update_schema() as update:
    update.make_column_optional("user_id")

DuckDB

Direct Connection

import duckdb

# Install and load Iceberg extension
duckdb.sql("INSTALL iceberg; LOAD iceberg;")

# Attach Rustberg catalog
duckdb.sql("""
    ATTACH 'https://rustberg.example.com' AS rustberg (
        TYPE ICEBERG,
        CREDENTIAL 'your-api-key'
    )
""")

# Query tables
result = duckdb.sql("""
    SELECT event_type, COUNT(*) as count
    FROM rustberg.analytics.events
    GROUP BY event_type
    ORDER BY count DESC
""").fetchall()

print(result)

With PyIceberg

import duckdb
from pyiceberg.catalog import load_catalog

# Load table via PyIceberg
catalog = load_catalog("rustberg", uri="https://rustberg.example.com")
table = catalog.load_table("analytics.events")

# Convert to Arrow and query with DuckDB
arrow_table = table.scan().to_arrow()

result = duckdb.sql("""
    SELECT 
        DATE_TRUNC('hour', timestamp) as hour,
        COUNT(*) as events
    FROM arrow_table
    GROUP BY 1
    ORDER BY 1
""").fetchdf()

print(result)

Polars

import polars as pl
from pyiceberg.catalog import load_catalog

catalog = load_catalog("rustberg", uri="https://rustberg.example.com")
table = catalog.load_table("analytics.events")

# Scan to Polars DataFrame
arrow_table = table.scan(
    selected_fields=["event_id", "event_type", "timestamp"]
).to_arrow()

df = pl.from_arrow(arrow_table)

# Polars operations
result = (
    df
    .with_columns(pl.col("timestamp").dt.date().alias("date"))
    .group_by("date", "event_type")
    .agg(pl.count().alias("count"))
    .sort("date", "count", descending=[False, True])
)

print(result)

AWS SDK Integration

boto3 for S3 FileIO

import boto3
from pyiceberg.catalog import load_catalog
from pyiceberg.io.pyarrow import PyArrowFileIO

# Configure AWS session
session = boto3.Session(
    aws_access_key_id="your-access-key",
    aws_secret_access_key="your-secret-key",
    region_name="us-east-1"
)

# Use with PyIceberg
catalog = load_catalog(
    "rustberg",
    uri="https://rustberg.example.com",
    credential="your-api-key",
    **{
        "s3.access-key-id": session.get_credentials().access_key,
        "s3.secret-access-key": session.get_credentials().secret_key,
        "s3.region": "us-east-1",
    }
)

table = catalog.load_table("analytics.events")

Assume Role for Cross-Account Access

import boto3
from pyiceberg.catalog import load_catalog

# Assume role in target account
sts = boto3.client('sts')
response = sts.assume_role(
    RoleArn="arn:aws:iam::123456789012:role/IcebergDataAccess",
    RoleSessionName="rustberg-session"
)

creds = response['Credentials']

catalog = load_catalog(
    "rustberg",
    uri="https://rustberg.example.com",
    credential="your-api-key",
    **{
        "s3.access-key-id": creds['AccessKeyId'],
        "s3.secret-access-key": creds['SecretAccessKey'],
        "s3.session-token": creds['SessionToken'],
        "s3.region": "us-east-1",
    }
)

REST API Direct Usage

curl Examples

# Set API key
export API_KEY="your-api-key"
export RUSTBERG_URL="https://rustberg.example.com"

# List namespaces
curl -s -H "Authorization: Bearer $API_KEY" \
    "$RUSTBERG_URL/v1/namespaces" | jq

# Get namespace
curl -s -H "Authorization: Bearer $API_KEY" \
    "$RUSTBERG_URL/v1/namespaces/analytics" | jq

# Create namespace
curl -s -X POST \
    -H "Authorization: Bearer $API_KEY" \
    -H "Content-Type: application/json" \
    -d '{"namespace": ["analytics"], "properties": {"owner": "data-team"}}' \
    "$RUSTBERG_URL/v1/namespaces" | jq

# List tables
curl -s -H "Authorization: Bearer $API_KEY" \
    "$RUSTBERG_URL/v1/namespaces/analytics/tables" | jq

# Load table
curl -s -H "Authorization: Bearer $API_KEY" \
    "$RUSTBERG_URL/v1/namespaces/analytics/tables/events" | jq

# Get config
curl -s -H "Authorization: Bearer $API_KEY" \
    "$RUSTBERG_URL/v1/config" | jq

Python requests

import requests

class RustbergClient:
    def __init__(self, base_url: str, api_key: str):
        self.base_url = base_url.rstrip("/")
        self.session = requests.Session()
        self.session.headers["Authorization"] = f"Bearer {api_key}"
        self.session.headers["Content-Type"] = "application/json"
    
    def list_namespaces(self) -> list:
        resp = self.session.get(f"{self.base_url}/v1/namespaces")
        resp.raise_for_status()
        return resp.json()["namespaces"]
    
    def create_namespace(self, namespace: str, properties: dict = None):
        data = {
            "namespace": namespace.split("."),
            "properties": properties or {}
        }
        resp = self.session.post(f"{self.base_url}/v1/namespaces", json=data)
        resp.raise_for_status()
        return resp.json()
    
    def load_table(self, namespace: str, table: str) -> dict:
        resp = self.session.get(
            f"{self.base_url}/v1/namespaces/{namespace}/tables/{table}"
        )
        resp.raise_for_status()
        return resp.json()

# Usage
client = RustbergClient("https://rustberg.example.com", "your-api-key")
namespaces = client.list_namespaces()
print(namespaces)

Jupyter Notebook Example

# Cell 1: Setup
%pip install pyiceberg[s3] pyarrow pandas matplotlib

from pyiceberg.catalog import load_catalog
import pandas as pd
import matplotlib.pyplot as plt

catalog = load_catalog("rustberg", uri="https://localhost:8080")

# Cell 2: Explore data
table = catalog.load_table("analytics.events")

# Show schema
print("Schema:")
print(table.schema())

# Show partitioning
print("\nPartition Spec:")
print(table.spec())

# Cell 3: Query data
df = table.scan(
    row_filter="timestamp >= '2024-01-01'"
).to_arrow().to_pandas()

print(f"Loaded {len(df)} rows")
df.head(10)

# Cell 4: Visualize
event_counts = df.groupby('event_type').size()
event_counts.plot(kind='bar', title='Events by Type')
plt.tight_layout()
plt.show()

# Cell 5: Time series analysis
df['date'] = pd.to_datetime(df['timestamp']).dt.date
daily_counts = df.groupby('date').size()
daily_counts.plot(kind='line', title='Daily Event Volume')
plt.tight_layout()
plt.show()

Error Handling Best Practices

from pyiceberg.catalog import load_catalog
from pyiceberg.exceptions import (
    NoSuchTableError,
    NoSuchNamespaceError,
    TableAlreadyExistsError,
    CommitFailedException,
)
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def safe_load_table(catalog, table_id: str):
    """Load table with proper error handling."""
    try:
        return catalog.load_table(table_id)
    except NoSuchTableError:
        logger.warning(f"Table {table_id} does not exist")
        return None
    except NoSuchNamespaceError:
        logger.error(f"Namespace for {table_id} does not exist")
        raise
    except Exception as e:
        logger.error(f"Unexpected error loading {table_id}: {e}")
        raise

def safe_append(table, data, retries: int = 3):
    """Append data with retry logic for conflicts."""
    for attempt in range(retries):
        try:
            table.append(data)
            return True
        except CommitFailedException as e:
            logger.warning(f"Commit conflict (attempt {attempt + 1}): {e}")
            if attempt == retries - 1:
                raise
            # Refresh table metadata and retry
            table.refresh()
    return False

Configuration Reference

Common PyIceberg Configuration

catalog_config = {
    # Catalog connection
    "uri": "https://rustberg.example.com",
    "credential": "your-api-key",
    "warehouse": "s3://my-warehouse/",
    
    # S3 configuration
    "s3.access-key-id": "...",
    "s3.secret-access-key": "...",
    "s3.region": "us-east-1",
    "s3.endpoint": "https://s3.us-east-1.amazonaws.com",
    
    # GCS configuration (alternative)
    # "gcs.project-id": "my-project",
    # "gcs.oauth2.token": "...",
    
    # Azure configuration (alternative)
    # "adls.account-name": "mystorageaccount",
    # "adls.account-key": "...",
    
    # Performance tuning
    "rest.retries": "3",
    "rest.retry-delay-ms": "1000",
    "rest.timeout-ms": "30000",
}

catalog = load_catalog("rustberg", **catalog_config)

Spark Configuration Reference

spark_config = {
    # Catalog
    "spark.sql.catalog.rustberg": "org.apache.iceberg.spark.SparkCatalog",
    "spark.sql.catalog.rustberg.type": "rest",
    "spark.sql.catalog.rustberg.uri": "https://rustberg.example.com",
    "spark.sql.catalog.rustberg.credential": "your-api-key",
    "spark.sql.catalog.rustberg.warehouse": "s3://my-warehouse/",
    
    # S3 configuration
    "spark.sql.catalog.rustberg.io-impl": "org.apache.iceberg.aws.s3.S3FileIO",
    "spark.hadoop.fs.s3a.access.key": "...",
    "spark.hadoop.fs.s3a.secret.key": "...",
    "spark.hadoop.fs.s3a.endpoint": "s3.us-east-1.amazonaws.com",
    
    # Performance
    "spark.sql.catalog.rustberg.cache-enabled": "true",
    "spark.sql.catalog.rustberg.cache.expiration-interval-ms": "60000",
}